
Journal of Computational Physics 219 (2006) 733–748

www.elsevier.com/locate/jcp
Accurate calculation of Green’s function of the
Schrödinger equation in a block layered potential

Sihong Shao a, Wei Cai b,*, Huazhong Tang a

a LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, PR China
b Department of Mathematics and Statistics, University of North Carolina at Charlotte, Fretwell 390G, Charlotte, NC 28223, USA

Received 31 October 2005; received in revised form 3 April 2006; accepted 17 April 2006
Available online 9 June 2006
Abstract

In this paper a new algorithm is presented for calculating the Green’s function of the Schrödinger equation in the pres-
ence of block layered potentials. Such Green’s functions have various and practical applications in quantum modelling of
electron transport within nano-MOSFET transistors. The proposed method is based on expansions of the eigenfunctions
of the subordinate Sturm–Liouville problems and a collocation matching procedure along possibly curved interfaces of the
potential blocks. Accurate numerical results are provided to validate the proposed algorithm.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Wave scattering in inhomogeneous media has various applications in engineering and physics – such as
electromagnetic wave scattering in layered media, and electron density waves in variable potential fields.
To simulate the wave phenomenon in such inhomogeneous media, the integral equation method is one of sev-
eral popular numerical methods, together with the finite difference time domain (FDTD) method [1], the finite
element (FE) method [2], and the discontinuous Galerkin time domain (DGTD) method [3]. The integral
equation method is particularly useful for solving problems in unbounded domains, and yields well condi-
tioned discrete algebraic systems. Key to the integral equation method is the existence and construction of
the appropriate Green’s function, which is closely related to the material properties of the background media
in which the scattering centers are embedded. There are numerous studies of Green’s functions in layered
media, together with associated numerical algorithms for calculating their approximations [4–7]. The problem
of the Green’s function in layered media, stacked along the z-direction, often reduces to calculating Hankel
transforms of the spectral form of the Green’s function – itself defined by Fourier transforms in the horizontal,
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x- and y-, dimensions. However, in the case of the electron density in a MOSFET device, the background
potentials – created by the source and drain and the substrate – are not constant along the horizontal direc-
tions and must be modelled by block constants at least. Since the potentials are part of the linear operator in
the Schrödinger equation, the Fourier transform approach cannot be used in this case.

In this paper, a new method is proposed for calculating the Green’s function of the two-dimensional Schrö-
dinger equation in the presence of block layered potentials. The Schrödinger operator is assumed to be sep-
arable in the presence of such potentials. The overall procedure occurs in two steps. Firstly, we represent the
Green’s function by means of separating the Schrödinger operator into vertical and horizontal components.
An infinite sequence of eigenfunctions is generated from the vertical equation while the coefficients for the cor-
responding infinite series expansion are obtained by solving the horizontal equation. The eigenfunctions can
be pre-calculated using one-dimensional Sturm–Liouville eigenvalue-problem solvers for piecewise constant
coefficients. Secondly, the continuity conditions of the Green’s function along the potential block boundaries
via a collocation method is used to determine the coefficients in the eigenfunction expansions of the first step.

Some previous work on the Green’s function for Maxwell’s equations in layered media can be found in
[4–6]. The work in [4] for layered media covered the case where the material constants are the same for each
horizontal layer. In [5,6], blocked layered media is considered where more than one material constant is
allowed for each horizontal layer. However, a different approach is used to construct the solution there.
Though, both our approach and the approach in [5,6] have employed eigenfunctions of the split operators,
we have used an eigenfunction expansion for the singular source to obtain differential equations for the expan-
sion coefficients of the Green’s function. Moreover, a collocation method based on Gauss points is used in this
paper to obtain remaining unknown coefficients, and we also address a more general case in this paper where
the interface between material blocks is curved.

Numerical examples, given in Section 4, validate the algorithm and demonstrate good convergence with
respect to truncation in the eigenfunction series expansion. The rest of the paper is organized as follows: in Sec-
tion 2, the mathematical model is described; in Section 3, the algorithm for calculating the Green’s function is
given in detail; and in Section 5, a conclusion, together with a discussion of future research issues, is presented.
2. Retarded Green’s function in block layered potentials

The motivation for studying the Green’s function of the Schrödinger equation in block layered potentials
comes from the investigation of electron transport in nano-MOSFET transistors where the drift-diffusion
equation fails to describe the electron transport through the nano-scale inversion layers [8]. The fact that
the potential within an horizontal layer is not constant is a result of the potential difference in the source
and drain regions. The Green’s function is the key component in the generalized Landauer–Büttiker formula
in calculating electron transport properties [12]. Moreover, other scenarios can also arise that we will encoun-
ter Green’s functions for block layered media such as the scattering of underwater objects near coastlines.

Given an infinite strip domain XL (see Fig. 1), let Ci = {(x(t),y(t)):t 2 [0,1]} denote the curved interface, and
Ct (Cb) the top (bottom) boundary of XL. Meanwhile, we let Xl

L ðXr
LÞ denote the sub-domain to the left (right)

of Ci.
We define a retarded Green’s function gL(r; r*,E) for the Schrödinger equation, r = (x,y) and r* = (x*,y*) in

the infinite strip domain XL, with block constant potential VL(r) as solution to the following equation:
E þ �h2

2
r 1

mðrÞr
� �

� V LðrÞ
� �

gLðr; r�;EÞ ¼ dðr� r�Þ; r; r� 2 XL; ð1Þ
where the potential VL(r) is of the following form:
V LðrÞ ¼
V l

k; r 2 Xl
L \ fðx; yÞ : x 2 R; y 2 ½dk�1; dk�g;

V r
k; r 2 Xr

L \ fðx; yÞ : x 2 R; y 2 ½dk�1; dk�g;

(
ðk ¼ 1; . . . ;NÞ; ð2Þ
and V l
k and V r

k are different constants, and the effective mass m(r) is assumed to be piecewise constant as in the
form of VL(r), and d(r) is the Dirac delta function. Here E is the electron energy and �h = h/2p with h is the
Planck’s constant. In many cases, we will simply write Green’s function as gL(r; r*).



…………

 d0

 d1

 d2

 dN−1

 dN
 Γt

 Γb

 Γi

 V2
 l  V2

 r

 V1
 l  V1

 r

 VN
 l  VN

 r

Fig. 1. XL: geometry for the block layered potentials.
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� Boundary conditions. We will assume zero Dirichlet boundary conditions on the top and bottom boundaries
of XL: gL(r; r*) = 0, if r 2 Ct or Cb. For x! ±1, a Sommerfeld outgoing radiation condition is assumed
ð�ox � ikÞgLðr; r�Þ ! 0; x! �1; ð3Þ

where k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE�V LÞ

�h2

q
.

3. Algorithm for calculating Green’s function gL(r; r*)

The Green’s function gL(r; r*) defined above will be represented by eigenfunction expansions for regions
r 2 Xr

L and r 2 Xl
L, respectively, and the continuity conditions due to the normal continuity of the current

operator J ¼ �hq
m Im½ðrgLÞ

�gL�[12] will be enforced at the interface Ci, for every rC = (x(tC), y(tC)) :¼
(xC,yC) 2 Ci,
gLðrCþ; r�Þ ¼ gLðrC�; r�Þ;
1

mþ
ogLðrCþ; r�Þ

onC
¼ 1

m�
ogLðrC�; r�Þ

onC
;

ð4Þ
where + (�) after m or rC represents taking the limit from the right (left) of the curved interface Ci, and nC is
the right-pointing normal of the interface Ci.

The construction of gL(r; r*) will be done in three steps. Firstly, we will define two sets of eigenfunctions
fwl

pðyÞg
1
p¼1 and fwr

pðyÞg
1
p¼1, along the vertical y-direction based on the piecewise constants V l

k and V r
k, respec-

tively. Secondly, we expand the Green’s function in terms of those eigenfunctions with x-variable coefficients
cl

pðx; x�; y�Þ and cr
pðx; x�; y�Þ, and then find the differential equations and the general solutions for cl;r

p ðx; x�; y�Þ.
Thirdly, we use the continuity conditions (4) to determine the remaining constants in the general expressions
of cl;r

p ðx; x�; y�Þ.

� Step 1: Eigenfunctions wp(y). Define orthogonal eigenfunctions wp(y) for the differential operator
�h2

2

d

dy
1

m
d

dy

� �
� V LðyÞ

� �
wpðyÞ ¼ �kpwpðyÞ; d0 6 y 6 dN ;

wpðd0Þ ¼ wpðdN Þ ¼ 0;

ð5Þ
where 1 6 p <1. Due to the self-adjointness of the differential operator, it is known [9,10] that the eigen-
functions fwpðyÞg

1
p¼1 form a complete and orthogonal basis for L2[d0,dN]. Thus, in distribution sense, we

can expand the Dirac delta function in terms of these eigenfunctions
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dðy � y�Þ ¼
X1
p¼1

wpðyÞwpðy�Þ: ð6Þ
For each set of the constants fV l
kg

N
k¼1 and fV r

kg
N
k¼1, the resulting eigenfunctions obtained will be denoted as

fwl
pðyÞg

1
p¼1 and fwr

pðyÞg
1
p¼1, respectively.The eigenvalues and eigenfunctions of the Sturm–Liouville problem

(5) can be obtained by a Pruess method (see Appendix A), designed specifically for finding numerical solu-
tions of Sturm–Liouville problems with piecewise constant coefficients as in (5). A key component in the
Pruess method is a stabilized shooting algorithm for computing the approximate eigenvalues, while the inte-
grations are preformed analytically.
� Step 2: Eigenfunction expansions. Consider the case when r� 2 Xr

L (the case of r� 2 Xl
L can be handled sim-

ilarly). We now expand gL(r; r*) using the eigenfunctions wl;r
p ðyÞ of step 1:
gr
Lðr; r�Þ ¼

X1
p¼1

cr
pðx; x�; y�Þw

r
pðyÞw

r
pðy�Þ; r 2 Xr

L; ð7Þ

gl
Lðr; r�Þ ¼

X1
p¼1

cl
pðx; x�; y�Þw

l
pðyÞw

l
pðy�Þ; r 2 Xl

L: ð8Þ
Next, we will determine the differential equations for the variable coefficients cl;r
p ðx; x�; y�Þ by inserting Eqs.

(7) and (8) into Eq. (1).

Case 1 (r 2 Xr
L). Substituting (7) into (1) and using (5) and (6), we get an inhomogeneous equation
E þ �h2

2

d

dx
1

mr

d

dx

� �
� kr

p

� �
cr

pðx; x�; y�Þ ¼ dðx� x�Þ; ð9Þ
the solution of which can be expressed
cr
pðx; x�; y�Þ ¼

A�1;p exp½�ikr
pðx� x�Þ� þ A�2;p exp½ikr

pðx� x�Þ�; x < x�;

Aþp exp½ikr
pðx� x�Þ�; x > x�;

(
ð10Þ
where kr
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrðE�kr

pÞ
�h2

q
. For x > x*, we have used the Sommerfeld radiation condition (3) to retain only the

right-going wave.
Differentiating Eq. (10) with respect to x, we have
dcr
pðx; x�; y�Þ

dx
¼

�ikr
pA�1;p exp½�ikr

pðx� x0Þ� þ ikr
pA�2;p exp½ikr

pðx� x�Þ�; x < x�;

ikr
pAþp exp½ikr

pðx� x�Þ�; x > x�:

(
ð11Þ
The function cr
pðx; x�; y�Þ must be continuous and its derivative has a jump of 2mr

�h2 at x = x*, namely,
cr
pðx�þ; x�; y�Þ ¼ cr

pðx��; x0; y�Þ ) Aþp � A�1;p � A�2;p ¼ 0; ð12Þ
dcr

pðx�þ; x�; y�Þ
dx

�
dcr

pðx��; x�; y�Þ
dx

¼ 2mr

�h2
) Aþp þ A�1;p � A�2;p ¼ cr

p; ð13Þ
where
cr
p ¼

2mr

ikr
p�h

2
: ð14Þ
From (12) and (13), we have
A�1;p ¼
cr

p

2
;

A�2;p ¼ Aþp �
cr

p

2
:

ð15Þ
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Case 2 (r 2 Xl
L). Substituting (8) into (1) and using (5), we obtain the following homogeneous equation:
E þ �h2

2

d

dx
1

ml

d

dx

� �
� kl

p

� �
cl

pðx; x�; y�Þ ¼ 0: ð16Þ
For the retarded Green’s function, cl
pðx; x�; y�Þ will have the following left-going wave form, observing the

Sommerfeld radiation condition (3),
cl
pðx; x�; y�Þ ¼ B�p exp½� ikl

pðx� x�Þ�; ð17Þ
where kl
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mlðE�kl

pÞ
�h2

q
.

� Step 3: Interface matching at rC = (xC,yC) 2 Ci. In order to determine the remaining constants in (10) and
(17), we will enforce the continuity condition (4) for the two series expansions gl

Lðr; r�Þ and gr
Lðr; r�Þ. After

truncating the expansion to a finite order P, we arrive at the equations for unknown coefficients,
XP

p¼1

½A�1;p expð�ikr
pðxC � x�ÞÞ þ A�2;p expðikr

pðxC � x�ÞÞ�wr
pðyCÞwr

pðy�Þ

¼
XP

p¼1

½B�p expð�ikl
pðxC � x�ÞÞ�wl

pðyCÞwl
pðy�Þ

1

mþ
XP

p¼1

fy0C½�ikr
pA�1;p expð�ikr

pðxC � x�ÞÞ þ ikr
pA�2;p expðikr

pðxC � x�ÞÞ�wr
pðyCÞ

� x0C½A�1;p expð�ikr
pðxC � x�ÞÞ þ A�2;p expðikr

pðxC � x�ÞÞ�ðwr
pÞ
0ðyCÞgwr

pðy�Þ

¼ 1

m�
XP

p¼1

fy0C½�ikl
pB�p expð�ikl

pðxC � x�ÞÞ�wl
pðyCÞ � x0C½B�p expð�ikl

pðxC � x�ÞÞ�ðwl
pÞ
0ðyCÞgwl

pðy�Þ:

ð18Þ
where x0C :¼ x0ðtCÞ and y 0C :¼ y0ðtCÞ.
Due to (15), the following inhomogeneous system of equations for fAþp ;B�p g

P
p¼1 is obtained
XP

p¼1

fAþp expðikr
pðxC � x�ÞÞwr

pðyCÞwr
pðy�Þ � B�p expð�ikl

pðxC � x�ÞÞwl
pðyCÞwl

pðy�Þg ¼ h1ðrC; r�Þ;

XP

p¼1

1

mþAþp ½y0Cikr
pw

r
pðyCÞ � x0Cðw

r
pÞ
0ðyCÞ� expðikr

pðxC � x�ÞÞwr
pðy�Þ þ

1

m�B�p ½y 0Cikl
pw

l
pðyCÞ

�

þx0Cðw
l
pÞ
0ðyCÞ� expð�ikl

pðxC � x�ÞÞwl
pðy�Þ

�
¼ h2ðrC; r�Þ;

ð19Þ
where
h1ðrC; r�Þ ¼
XP

p¼1

2mþ
kr

p�h
2

sinðkr
pðxC � x�ÞÞwr

pðyCÞwr
pðy�Þ;

h2ðrC; r�Þ ¼
XP

p¼1

2y0C
�h2

cosðkr
pðxC � x�ÞÞwr

pðyCÞ �
2x0C
kr

p�h
2

sinðkr
pðxC � x�ÞÞðwr

pÞ
0ðyCÞ

" #
wr

pðy�Þ:
ð20Þ
In order to obtain fAþp ;B�p g
P
p¼1, system (19) will be collocated at pre-selected Gauss points fyC ¼ yjg

P
j¼1. From

(19), we can see that the coefficients fAþp ;B�p g
P
p¼1 depend on x*, y*, thus fcl;r

p ðx; x�; y�Þg
P
p¼1 depend on x, x*, y*

from (10), (17). As a result, a P-term series approximation for the Green’s function gL(r; r*) in XL is obtained,
which will be denoted by gL,P(r; r*).

4. Numerical results

This section will present several numerical results to validate the algorithm proposed in Section 3. Since the
Green’s function gL(r; r*) is defined by



738 S. Shao et al. / Journal of Computational Physics 219 (2006) 733–748
LgLðr; r�Þ ¼ dðr� r�Þ; ð21Þ

where the differential operator L ¼ E þ �h2

2
rð1

mrÞ � V L, we should expect that the approximation gL,P(r; r*) to
gL(r; r*) satisfies
LgL;P ðr; r�Þ ! dðr� r�Þ as P !1

in the sense of distribution.
Fig. 2. Example 1: E = 0 and P = 60. (a) Re(gL,60). (b) log10jReðgL;60 � ĝL;60Þj.
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Subsequently, for each r*,
hLgL;P ðr; r�Þ; f ðrÞi ! f ðr�Þ as P !1 ð22Þ
Fig. 3. Example 1: E = 1 and P = 60. (a) Re(gL,60). (b) log10jReðgL;60 � ĝL;60Þj.



Fig. 4. Example 1: E = 1 and P = 60. (a) Im(gL,60). (b) log10jImðgL;60 � ĝL;60Þj.

Table 1
Example 1: errors in distribution

P E = 0 E = 1

fP(r*) eP(r*) fP(r*) eP(r*)

5 5.640 1.186e�1 5.645 + 2.049e�14i 1.243e�1
10 5.525 3.825e�3 5.531 + 9.554e�15i 9.453e�3
20 5.521 3.542e�5 5.527 � 4.619e�14i 5.589e�3
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Fig. 5. Example 2: six calculated eigenfunctions.

Fig. 6. Example 2: close-up of the real part of the Green’s function, Re(gL,80), with E = 0 and P = 80.
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Fig. 7. Example 2: E = 1 and P = 80. (a) Re(gL,80). (b) Im(gL,80).
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provided f 2 C2
0ðXÞ; X � XL; r� 2 X. ÆÆ,Ææ represents the inner product in L2 space. Therefore, we define the

error of the Green’s function in the distribution sense as
eP ðr�Þ ¼ jfP ðr�Þ � f ðr�Þj; ð23Þ

where fP ðr�Þ :¼ hLgL;P ðr; r�Þ; f ðrÞi.



Table 2
Example 2: errors in distribution

P E = 0 E = 1

fP(r*) eP(r*) fP(r*) eP(r*)

10 6.085 5.642e�1 6.092 + 8.919e�10i 5.704e�1
20 5.528 6.675e�3 5.533 + 8.062e�7i 1.230e�2
40 5.520 7.872e�4 5.526 + 8.062e�7i 4.833e�3

Fig. 8. Example 3: close-up of the real part of the Green’s function, Re(gL,100), with E = 0 and P = 100.
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In our numerical tests, we select Ci = {(x(t), y(t)):x(t) = �3sin(2pt), y(t) = 100t, t 2 [0, 1]} and X =
{(x,y):�50 6 x 6 50, 0 6 y 6 L = 100} which consists of N layers along y-direction, take �h = 1, m = 0.5, and
f ðrÞ ¼ 1000
x

50

	 
2

� 1

� �3 y
100

	 
3 y
100
� 1

	 
3

sin 6
x

50
þ y

100

	 
h i
for error estimation. As an example, we take r* = (5, 25) where f ðr�Þ � 26198073
4096000

sinð21
10
Þ ’ 5:521. Moreover, we

consider N = 10 layers equally spaced vertically. In the Pruess method, the initial grid number in y-direction
is 600 to ensure sufficient accuracy of the eigenfunctions.

Example 1. We consider the retarded Green’s function for an infinite strip XL, for which an analytic form can
be obtained as follows:
ĝLðr; r�Þ ¼
X1
p¼1

� i

�hmp
wpðyÞwpðy�Þ expðikpjx� x�jÞ; ð24Þ



Fig. 9. Example 3: E = 1 and P = 100. (a) Re(gL,100). (b) Im(gL,100).
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where kp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE�kpÞ
p

�h ; mp ¼ �hkp

m and wp(y), kp satisfy the equation
�h2

2m
d2

dy2
� V ðyÞ

� �
wpðyÞ ¼ �kpwpðyÞ; 0 6 y 6 L: ð25Þ



Table 3
Example 3: errors in distribution

P E = 0 E = 1

fP(r*) eP(r*) fP(r*) eP(r*)

20 5.554 3.323e�2 5.595 � 2.398e�2i 7.739e�2
30 5.517 3.830e�3 5.517 + 1.431e�5i 3.892e�3
40 5.521 3.127e�5 5.523 + 1.772e�4i 1.458e�3

Fig. 10. Example 3: error log10 |gL,40 � gL,100| with E = 1.
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The above Green’s function ĝLðr; r�Þ represents the wave function at r due to an excitation at r* in an infinite
wire, see [12].

To verify the accuracy of the algorithm, we set V(y) ” 0. Now the eigenvalues and eigenfunctions of (25) can
be exactly derived as
kp ¼
pp
L

	 
2

; wpðyÞ ¼
ffiffiffi
2

L

r
sin

pp
L

y: ð26Þ
Figs. 2–4 give plots of the Green’s function gL,P(r; r*) and the relative error jgL;P ðr; r�Þ � ĝL;P ðr; r�Þj with
truncation order P = 60 in the domain [�50,50] · [0,100] for E = 0 and 1, respectively. Here, ĝL;P ðr; r�Þ is
the P-term series approximation of ĝLðr; r�Þ in (24). When E ¼ 0; ĝL is in fact the Green’s function of the
Poisson equation. The results show that the errors jgL;P ðr; r�Þ � ĝL;P ðr; r�Þj are on the order of 10�10. Thus,
the truncations of the exact and numerical Green’s function, ĝL;P and gL,P, are indistinguishable. On the other
hand, the errors eP(r*) given in Table 1 show that the proposed algorithm is very accurate with respect to the
truncation order P and has good convergence rate as the truncation parameter P is increased.

Example 2. In the second example, we take the potentials on two sides of the curved interface to consist of
one single sequence of constant values, for instance, V r

k ¼ V l
k ¼ 0:5þ 0:05ðk � 1Þ; k ¼ 1; 2; . . . ;N .
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Fig. 11. Example 3: errors log10 |gL,P � gL,100| with P = 20 and 40 along two lines: (a) x = x*; (b) y = y*. E = 1.
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In Fig. 5, we plot six eigenfunctions corresponding to the eigenvalues: k1, k5, k10, k20, k35, k50, obtained
by the Pruess method. Figs. 6 and 7 plot the calculated Green’s function gL(r; r*) with truncation order
P = 80 in the domain [�50,50] · [0,100] with E = 0 and 1, respectively. It can be seen that all computed
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Green’s functions have a symmetric profile with respect to the vertical line x = x*. Table 2 gives the errors
eP(r*). The results show that the proposed algorithm converges fast as the truncation parameter P is
increased.

Example 3. The third example considered involves different potentials on two sides of the interface Ci:
V r

k ¼ 0:5þ 0:05ðk � 1Þ; V l
k ¼ 0:4þ 0:04ðk � 1Þ; k ¼ 1; 2; . . . ;N . Figs. 8 and 9 display the Green’s function

gL(r; r*) with truncation order P = 100, calculated in the domain [�50,50] · [0, 100] with E = 0 and 1, respec-
tively. We see that the Green’s function is not symmetric with respect to the vertical line x = x*, the continuity
conditions at Ci are satisfied nicely. The errors eP(r*) in Table 3 show that the proposed algorithm is again very
accurate with respect to the truncation order P and has good convergence as the truncation parameter P is
increased. We plot the error log10 |gL,40 � gL,100| with E = 1 in Fig. 10, which shows that most of the
large errors concentrate in the neighborhood of the singular point r* = (5, 25). In Fig. 11, we plot the errors
log10 |gL,P � gL,100| with P = 20 and 40, along the line x = x* = 5 and the line y = y* = 25, respectively. Our
algorithm gives good convergence away from the singular point of gL(r; r*).
5. Conclusion

In this paper, we have introduced a novel numerical method for calculating the Green’s function of the
Schrödinger equation in a block layered potential based on eigenfunction expansions and a collocation match-
ing procedure. Such a Green’s function may also find applications in electromagnetic and sound wave scatter-
ing in block layered media. It should be mentioned that the method proposed in this paper can be extended to
more than two column of blocks potentials or media. In principle, it can be generalized as an approximation
algorithm for constructing Green’s function of variable coefficient differential operators by using check-board
type piecewise constant/piecewise linear approximation of the coefficients.
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Appendix A. Pruess algorithm

Consider a general Sturm–Liouville problem
� d

dx
rðxÞ du

dx

� �
þ sðxÞu ¼ ktðxÞu;

a1uðaÞ ¼ a2rðaÞu0ðaÞ; b1uðbÞ ¼ b2rðbÞu0ðbÞ:
ðA:1Þ
In the Pruss method, an approximated Sturm–Liouville problem for the above
� d

dx
RðxÞ dU

dx

� �
þ SðxÞU ¼ KT ðxÞU ;

a1UðaÞ ¼ a2RðaÞU 0ðaÞ; b1UðbÞ ¼ b2RðbÞU 0ðbÞ
is numerically solved. Here, R(x), S(x) and T(x) are piecewise constant approximations of functions r(x), s(x)
and t(x) in (A.1). Given a mesh a = x0 < x1, . . . ,xN� 1 < xN = b, and define xi�1

2
¼ ðxi�1 þ xiÞ=2. Then, R(x),

S(x) and T(x) are defined by
RðxÞ ¼ rðxi�1
2
Þ :¼ ri; SðxÞ ¼ sðxi�1

2
Þ :¼ si; T ðxÞ ¼ tðxi�1

2
Þ :¼ ti;
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x 2 (xi� 1, xi) for all 1 6 i 6 N. An ‘‘explicit’’ solution of (5) is easily derived as follows:
UðxÞ ¼ Ui�1U
0
iðx� xi�1Þ þ ðRU 0Þi�1Uiðx� xi�1Þ=ri; x 2 ½xi�1; xi�; ðA:2Þ
where Ui = U(xi), (RU 0)i = (RU 0)(xi), and
UiðsÞ ¼
sinðxisÞ=xi; ki > 0;

s; ki ¼ 0;

sinhðxisÞ=xi; ki < 0:

8><
>: ðA:3Þ
Here ki ¼ Kti�si
ri

and xi ¼
ffiffiffiffiffiffiffi
jkij

p
. Then, setting x = xi in (A.2) gives
ðRU 0Þi
U i

� �
¼ Oi

ðRU 0Þi�1

Ui�1

� �
; Oi ¼

riU
0
i riU

00
i

Ui U0i

� �
ðxi � xi�1Þ; ðA:4Þ
subject to initial data
ðRU 0Þ0
U 0

� �
¼

a1

a2

� �
and

ðRU 0ÞN
U N

� �
¼

b1

b2

� �
:

Finally, we can use a shooting method to find the eigenvalues and eigenfunctions of the approximating prob-
lem (5). We refer the readers to [10,11] for a detailed description of Pruess method.
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